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Normal and anomalous scaling of turbulence
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A non-Gaussian model of the probability density functi®DF) of |Au,| is proposed to study how the
scaling exponentS, of the structure functio|Au,|P) of finite Reynolds number turbulence depends upon the
Taylor-microscale Reynolds numbBy, . HereAu, is the longitudinal velocity difference across a distance
and( ) is the statistical average. The model not only predicts anomalous sc&|jrgp(3 for p>3) observed
in experiments at a finite Reynolds number, but also predictsShapproaches normal scalimg3 while R,
is very high. Hence, in contrast to the prevailing multiscaling models, the non-Gaussian PDF model suggests
a completely different picture of scaling of isotropic turbulence: the anomalous scaling observed in experi-
ments is a finite Reynolds number effect, and the normal scaling is valid in the real Kolmogorov inertial range
corresponding to an infinite Reynolds number.
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PACS numbdp): 47.27.Gs, 47.27.Jv

The issue of normal and anomalous scaling of isotropidng multiscaling models, the non-Gaussian PDF model sug-
turbulence is a hot topic of statistical physics of turbulencegests a completely different picture of scaling of isotropic
[1]. The structure function of order is defined ag|Au,|[P)  turbulence: the anomalous scaling observed in experiments is
or (AuP), where() is the statistical average amd, is the @ finite Reynolds number effect, and the normal scaling is

longitudinal velocity difference across a distanceln the ~ Valid in the real Kolmogorov inertial range at an infinite
inertial range,(|Au,|P)~ré or (AuPY~rs, and £, is the Reynolds number. First we explain how this conclusion is

scaling exponent of ordey. Strictly speakingZ, is defined obtained, and then discuss its implication and relevant issues.

for the idealized model of inertial range corresponding to th Let _P(X) Zbe. the PDF ofx=|Au|/Dy (1), V\_/here
asymptotic case of an infinite Reynolds number, and is calleeia)LL(r)_<Aur> is the second-order structure function. We
the real(or theoreticgl inertial range scaling exponent in this

paper. According to Kolmogorov's theory of 194K441) [2], o

{p=p/3 (normal scaliny However, the experimental values (|Au[Py=D (r)PAxP), (xP)= fo xPP(x)dx. (1)

of high-order scaling exponents are substantially lower than

the K41 predictior{3,4]. In order to explain this anomalous Although we are not able to drive the expressionR{k)
scaling observed in experiments, various intermittency modfrom the Navier-Stokes equations, the experimental data of
els have been developdd]. We have showr5] that the  PDF ofAu, can be used to derive the form B{x). Accord-
scaling range found in experiments is not the same as the reaig to the experimental da{&], we have

Kolmogorov inertial range, and the finite Reynolds number
effect should be considered in comparing experiments with
theories of inertial-range statistics. In fact, the structure funcy g the parametei®,, B, and u are functions of. Refer-

tions do not exactly follow power laws over thapproxi- ence[7] discussed the question of over whiatange Eq(2)
mate scaling range found in experiments, which is com-js valid. For the study of scaling exponerSs, it is enough
monly called inertial range in the literature and actually istg know that Eq.(2) is valid over the(approximat scaling
not the real Kolmogorov inertial rang&]. The quality of the range.

power-law behavior is modest even at a large Reynolds num- The PDE of the absolute value of a Gaussian random
ber, and a curvature of the structure functions is generally,5riable is

visible on a log-log plof6]. Therefore, in order to solve the

issue of normal and anomalous scaling of isotropic turbu- Po(X)=(2/7)Y%exp —x?/2), O0<x<oo. ®)
lence, it is indispensable to study whether and how the scal- o

ing exponents obtained by experiments at a finite Reynold8Y the definition ofP(x) andPg(x), we have

number differ from the real inertial-range scaling exponent w0 o

{p at an infinite Reynolds number. In this paper, a non- f P(x)dx=f Ps(x)dx=1 (4)
Gaussian model of probability density functidRDF of 0 0

|Au,| is proposed to study how the scaling exponegof

(|Au,|P) of a finite Reynolds number turbulence depend

upon the Taylor-microscale Reynolds numBgr. The non- c c

Gaussian PDF model not only predicts anomalous scaling fo X“P(x)dx= fo X“Pg(x)dx=1. ®)
(Sp,<p/3 for p>3) observed in experiments at a finite Rey-

nolds number, but also predicts thg} approaches normal Therefore,P(x) and Pg(x) intersect at two point; and
scalingp/3 while R,—. Hence, in contrast to the prevail- x,, i.e.,

P(x)=Pgoexp(—Bx*) while x>2 2
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TABLE I. Dependence 0§, upon boundary conditio(BC), d, ur,, K, andn for the case oR, =800 and
Cp=0.75.K is the Kolmogorov constant.

BC d HMm K n S Sy Se Sg Sio Si2

(8a 2.6 1.0 1.2 2 0.694 1.28 1.78 2.21 2.57 2.89
(8h) 2.6 1.0 1.2 2 0.694 1.28 1.78 2.21 2.58 2.91
(80 2.6 1.0 1.2 2 0.694 1.28 1.78 2.21 2.58 2.90
(82 2.6 1.0 1.5 2 0.693 1.28 1.79 2.22 2.59 2.92
(8b) 2.6 1.0 1.5 2 0.693 1.28 1.79 2.22 2.60 2.94
(80 2.6 1.0 1.5 2 0.693 1.28 1.79 2.22 2.60 2.93
(8a 2.556 1.0 1.2 2 0.694 1.28 1.79 2.24 2.63 2.98
(8a 2.667 1.0 1.2 2 0.694 1.28 1.76 2.16 2.48 2.75
(8a 2.6 0.8 1.2 2 0.694 1.28 1.78 2.21 2.59 2.93
(8a 2.6 1.2 1.2 2 0.694 1.28 1.78 2.20 2.56 2.88
(8h) 2.6 0.8 1.2 2 0.694 1.28 1.78 2.22 2.61 2.95
(8b) 2.6 1.2 1.2 2 0.694 1.28 1.78 2.21 2.57 2.89
(89 2.6 1.0 1.2 1 0.697 1.28 1.75 2.15 2.48 2.76
(89 2.6 1.0 1.2 4 0.692 1.29 1.80 2.24 2.63 2.97
(80 2.6 1.0 1.2 1 0.697 1.28 1.75 2.15 2.49 2.77
(80 2.6 1.0 1.2 4 0.692 1.29 1.80 2.24 2.63 2.98

P(x;)=Pg(x;) and P(x,)=Pg(X,). (6)  Therefore, the PDF modeld) have four undetermined pa-

rametersB, u, X;, andx, only; other parameter®,, A,
According to the experimental data of Tabeliegal. [7], x;, andB; (i=0,1,2,3) can be expressed in termsByfu, X,
is around 0.5 and, is around 2.4(this author thanks Pro- andx,, so four independent conditions are needed to deter-
fessor Tabeling for providing enlarged Figures of their ex-mine the PDF model§7) completely. We already have two
perimental data In the scaling range, a simple and reason-conditions(4) and(5), and two other conditions are derived

able representation d¥(x) is in the next paragraph. The parametgrdetermined by the
four conditions is between 2.3 and 2.5, whileis in the
P(x)=exd —f(x)], (79 (approximatg scaling range. Since,> 2, Eq.(7b) is just the
experimental resul2).
f(X)=—In(Pgy)+Bx* if x=x,, (7b) If there is a scaling range for the structure functions

(]Au,|P) of isotropic turbulence, then in the scaling range we
f(X)=Ag+AXx+AX2+ A3 if x;<x=<X,, (700 have

d_
f(X)=Bg+Bix+B,x>+Byx® if 0=x=x,. (7d) (x)1{x*)?=const, (10

here (x*) is the flatness{x3) is the skewness, and the
xperimental value of the exponeis around 2.6. Different
intermittency models give different values @ffor example
the log-normal mode[8] gives d=8/3, the multifractalp
model[9] givesd=2.595, and the She-Leveque mo@&0]
eads tod=2.556. In our numerical calculation, these differ-
Mt values ofl are used and compared, and the result is given
in Table I. Different values of the constant of Ef0), which

P(x) andf(x) are supposed to be continuous and smooth a
X, and x,. Following the cubic spline method of applied
mathematics, the coefficients andB; (i=0,1,2,3) in Egs.
(70) and(7d) are determined by Ed6) and some boundary
condition atx=0. Various boundary condition8C’s) at x
=0 have been used and compared. Table | shows the resu
for the following three typical cases:

B.= B tx = are compatible with the experimental data of Tabeknal.
3=0 and no BC atx=0, (83 [7], are also used and compared; they lead to nearly the same
df(x)/dx=0 at x=0, (8b) scaling exponents. In this paper, we deal with the structure

functions(|Au,|P) of the absolute value aku, . According

to Kolmogorov’s similarity hypothesis, which underlies both
K41 and K62 theory[2,8], (|Au,|P) and (AuP) have the

By using experimental data of Tabeliegal.[7], itis easyto ~Same scaling exponents. Of course, it is a controversial issue
determine howf(0) andu change withr, and the empirical Whether it is valid for oddp. In the case ofp=3, experi-
formula of Eq.(8¢) can be obtained by a low-order polyno- ments[11] show that(|Au,|®) and D, (r)=(Au?) have

mial fit. As shown in Table I, different boundary conditions almost the same scaling exponent. Hence, in the scaling
at x=0 generate nearly the same high-order scaling exporange, we have
nents, although they lead to different behaviorRfx) at

smallx. By Egs.(3), (6), (7a), and(7b), we have

f(0) is given by some empirical formula. (8c)

{|Au,|®/D (r)=const. (11

o w2 Equations(4), (5), (10), and(11) are the four independent
Po=(2/7) " “exp(Bx5 —Xx5/2). (9 conditions to determine the four undetermined paramders
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M, X1, andx, of the PDF modelq7). The experimental small-scale range within which the terrds and ® on the
values of the constant of Eqll) is around—5 to —4; its  right-hand side of Eq(14) are negligible, so
different values are used in our numerical calculation and
give nearly the same scaling exponents. Di(rn)=—(2)er or —D_ (r)/er=0.8, (15
Now we outline how to apply the above non-Gaussian
PDF model to calculate the scaling exponegjof (|Au,|P) which is the celebrated Kolmogordvlaw. Since the terms
of finite Reynolds number turbulence. First of all, we have to¥ and ® of Eq. (14) approach zero algebraically and very
determine the dependence of the four undetermined param-slowly, strictly speaking, the power lai@5) is valid only for
etersB, u, X;, andx, of the PDF model$7). In order to use  the asymptotic case of an infinite Reynolds number. As
Egs.(4), (5), (10), and(11) to determine the dependence of shown in[5], within the scaling range found in experiments
the parameterB, u, x;, andx,, the second-order structure at a finite Reynolds number; D, (r)/er is substantially
function D, (r) and the third-order structure function lower than 0.8, and is not a constant independent (fee
D...(r) are needed. For giveR, , by using the procedure Fig. 1 of Ref.[5]), so the scalind> ~r is not exact. The
described in Reff5], we calculate the third-order structure scaling range is called “inertial range™ in the literature, but

functionD_, (r). The three-dimensional energy spectrum isactually is not the real Kolmogorov inertial ranffgl. Obvi-
ously the(approximatg scaling range is around the maxi-

E(k)=Ke3% 5BF(k/kg)/[1+ (ko/K)"*53], (120 mum pointr,,, where —D_  (r)/er takes its maximum
value and changes with slowly aroundr,,. The scaling
and F(k/kq) is obtained by solving the spectral dynamic exponentS, of D, (r) overr,<r<r, is calculated by the
equation numerically5]. Here K is the Kolmogorov con- least-squares method mentioned aboSgi6 a special case
stant,e is energy dissipation raté,=(e/»°)"* is the Kol- ot S, for p=3), and its value changes as theanger ,;<r
mogorov wave numbety, is the kinematic viscosity, ankh <, changes. As a common practice, it is required that the
andn are large-scale parameters. Different valuek @indn scaling exponerts; overr,<r<r, is equal to 1. The scaling
are used in our numerical calculation to see their effect ORkxponentS; over the range,<r<r, is a function ofr , and

Sy, which is shown in Table I. By using E¢12) and r,, denoted byS,(r,,r,). Generally speaking, there are
" many (,,r,) satisfying Sz(r1,r,)=1 when the range,
DLL(r)=4f E(Kk)[1/3+cog kr)/(kr)? <r=r, is aroundr,,. Hence there are mamyranges around
0 rm over whichS;=1. In our calculation, the scaling range

r{<r=r, is defined as the widestrange satisfying the fol-

. 3
sinckr)/(kr)"]dk, (13 lowing conditions:
we obtain the second-order structure funct@p (r) (Mo- . _
nin and Yaglon{1]). The resultanD () andD_ (r) are Scaling exponentS; of Dy (r) over rﬁrsrz—(lléa
checked: in the universal equilibrium rand®  (r) and
D, (r) should satisfy the Kolmogorov equation, which is an —D . (r)/er=Cp whenr;srsr,, Cp<0.8.
exact statistical result of the Navier-Stokes equafibpand (16b)

D, (r) should be compatible with Batchelor's formula,

which fits the experimental data &f | (r) very well. After  According to[5], if Cp=0.795, there is no scaling range
D_.(r) andD (r) are derived and checked, Ed4), (5), while R,<5000. If C5;=0.7, there is a scaling range of
(10), and(11) are used to determine how the four undeter-nearly two decades foR,=2000, and the quality of the
mined parameterB, u, X;, andx, of the PDF modelg7) power-law behavior is modest over the scaling range; the
change withr in the (approximatg scaling range for a given larger C is, the narrower the scaling range<r<r, be-

R, ; as mentioned above, other parametgs A;, andB; of  comes, and the better is the quality of the power-law behav-
the models(7) are expressed in terms & u, x;, andx,. ior in the scaling range. A€ approaches 0.8, the critical
By using Egs.(1) and (7), we calculate how(|Au,|P) R, for the existence of the scaling rangg<r=<r, becomes
changes wittr in the scaling range for a giveR, . Finally,  higher and higher, and the scaling range approaches the real
within the scaling range, the log-log plot ¢fAu,|P) against inertial range. Hence, we have

r is fitted by a straight line using the least-squares method,

and its slope is the scaling exponefi{s The result is given S;—¢p as Cp—0.8 and Ry—, 17)

in Fig. 1, and the meaning & and is explained in the . Lo i i
nextgparagraph. 9®o fm P where ¢, is the real(or theoretical inertial range scaling

Before discussing our results, it is necessary to explaiffXPonents. The factqey, in Table | and Figs. 1 and 2 is the
how to determine the scaling rangg<r=<r, of finite Rey- value of . of Eq. (7b) atr=r,, and different values oft,
nolds number turbulence. We uBg  ,(r) to determine the Ccorrespond to different values of the constant of &q).

scaling range. From the Navier-Stokes equations, we have Figure 1 shows how the scaling exponef§s of finite
[1] Reynolds number turbulence depend u@mandR, . The

continuous line is for the case Gf; =0.795, the small black
D L(r)=—(Her+V+d, ¥=6vdD , (r)/dr, squares are fo€p=0.75, and the circles are f@>=0.7. In
(14) the case ofC;=0.795, there is no scaling rangesr=<r,
for R, <<5000. Over the scaling range=<r=r,, the quality
where® is a term representing the effect of large-scale mo-of the power-law behavio¢|Au,|P)~r% is modest forCp
tion. According to Kolmogoroy2,8], the inertial range is the =0.7 and is improved a€ increases. Table | shows how
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s, T - 2 clearly show that the non-Gaussian PDF model not only
———————3 " p=10 | predicts(absolute and relatiyjeanomalous scaling observed

3.0r L. s . in experiments at a finite Reynolds number, but also predicts
Lle t thatS, approaches normal scaliqg3 while R,—, so the

Feoe . 3 8 * =8 anomalous scaling observed in experiments is a finite Rey-

°.: s " nolds number effect. It should be mentioned that Grossmann
200" R — — et al. and Vainshtein and Sreenivasgi?] have studied the

sa8 80 issue of the finite Reynolds number effect on the scaling

- . exponents from different viewpoints.

ses s & o e * = An important issue is whether the available data deny
1.0k - K41 normal scaling {,=p/3). Kadanoff[13] pointed out

e ve v that, “Theory cannot for the moment distinguish the weak

. X ! p=2 fluctuation of K41 and the intermittency of K62. To settle a

10° 16* 1° Ry 16 guestion of this kind we should look to experiments. The

experimental evidence suggests the existence of intermit-

FIG. 1. The dependence of scaling exporntiponCp andR,  tency but is not yet conclusive.” In fact, the available ex-
forp=2,4,6,8,and 10;—, Cp=0.795;M B W, C,=0.750  perimental data do not deny asymptotic K41 scaling of iso-
O 0O, Cp=0.7,K=12,n=2,d=2.6, uy=1, and the boundary {ropic turbulence if the data are properly interpreted. The
condition is(8a) or (8b) or (8c). (approximatg scaling range found in experiments at a finite
Reynolds number is not the real Kolmogorov inertial range
of isotropic turbulencg5]. The experimental structure func-
tions do not clearly exhibit power law even at a large Rey-
nolds numberon a log-log plot a curvature of the structure
Junction is visible in the scaling rang¢6]. In some flow
configurations such as geophysical flows, due to the strong
%hearing effect, théapproximatg¢ scaling range cannot be

the boundary conditiofBC) and the factorsl, u,,, K, andn
influence S, for the case ofR,=800 andCp=0.75; the
higherR, is, the smaller the influence will be. TI8 shown
in Table I is in agreement with the famous experimental dat
of Anselmetet al. [3]. For all thesed, u,, K, n, and the
boundary conditions listed in Table I, the scaling exponent

Sp approacheg/3 while Cp—0.8 andR, —. _ described by an isotropic turbulence models. Kraichiiat

_ According to Ref[6], it is better to use the relative scal- gaiq “relatively little attention has been devoted to the pre-
ing exponentsy of (|Au[?) against|Au,|”) over the range giction of turbulence statistics at finite Reynolds number
20§r/77s300 to .make.a comparison with experments in |t s likely that the question of intermittency corrections
various flow configurations by the extended self-similarity; k41 can be resolved only when a detailed understanding
method of Benzet al.[11]; heren= 1/, is the Kolmogorov  f the dynamics at finite Reynolds numbers has been
scale. In the framework of isotropic turbulence adopted ingchieved.” Moreover, in some cases, the so-called experi-
this paper, only two large-scale parametegsandn of EQ.  mental evidence of K62 scaling actually favors K41 normal
(_12) are avgilable to simulate the features pf large-scale moscaling if the data are properly interpreted. For example, by
tion, and differentko/kq corresponds to differenR,. Of  ysing the Kolmogorov equation, W&5] have shown that the
course, the effect of large-scale shear motion cannot be cogxperimental and numerical results of the second-order rela-
sidered in the framework of ISOtrOpIC turbulence. The non'tive Sca”ng exponent being 0(Wh|ch was previous'y inter-
Gaussian PDF modelg) are used to calculate the relative preted as a clear evidence of K62 scalimgtually favors
scaling exponentgy of (|Au,|?) against(|Au,|®) over the K41 scaling ¢,=2/3) rather than K62 scaling§="0.7). In
range 26<r/»=300 for p from 2 to 10, and the result is this paper, we demonstrate that the anomalous scafjg (
shown in Fig. 2, which is in agreement with the experimental~ p/3 and g; <p/3 while p>3) found in experiments at a
data summarized in Fig. 3 of R¢6]. Therefore, Figs. 1 and finite Reynolds number is compatible with the K41 normal
scaling ,=p/3), because both of them are logical conse-

3.0 oo T T T guences of the same non-Gaussian PDF model.
. Finally we make a summary. The PDF modéls with
ol I I i the four conditiond4), (5), (10), and(11) are a simple and
| reasonable expression of experimental facts, andf Eq.
2.0r | i (7b) is much lower than 2 in the scaling range, so the model
! is highly non-Gaussian. The non-Gaussian model not only
i ! ] predicts anomalous scaling observed in experiments at a fi-
nite Reynolds number, but also predicts that the (eathe-
1.0y : T oretica) inertial-range scaling exponedt, is p/3, which is
the limit value ofS, asCp—0.8 andR,— . As shown in
T4 6 8§ 10 p Fig. 1, the higher the ordgris, the slower isS, approaching

{p=p/3; hence, in the experimental rangeR)f, the higher
FIG. 2. The relative scaling exponent§ of (|Au,|P) against the orderp is, the larger will be t'h.e deviaﬁon fﬁp from
(|Au,|®) for various values of large-scale parameterandk, (n {p=p/3. In contrast to the prevailing multiscaling models,
=1, 2, and 4; the range df,/k4 corresponds to 869R,<10%). our results suggest a completely different picture of scaling
K=1.2,d=2.6, un,=1, and the boundary condition {8a) or (8b) of isotropic turbulence: the anomalous scaling observed in
or (80). experiments is a finite Reynolds number effect, and the nor-
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mal scaling ¢,=p/3) is valid in the real Kolmogorov iner-
tial range corresponding to an infinite Reynolds number. One
issue is whether the asymptotic K41 behavior is just a con-
sequence of the particular fitting form of Eda)—(7d) for
P(x). Several different fitting forms folP(x) have been
tested(see the Appendjx the asymptotic behavior remains
the same as long as the well-grounded conditi(®)s (4),

f(X)=Ag+ A X+AX2+AX3 if x;<x<X,, (A2)

f(X):A0+A1X+A2X2+A3X3+A4X4 if X1SX=Xo.
(A3)

The fitting forms over the interval €x<x; we have
tested are

(5), (10), and(11) are satisfied, and the sarig | (r) and f(X)=Bo+Bx# if 0<x=x,, (A4)
D, (r) are used. For understanding our results, it is essential

to realize that the finite Reynolds number effect decreases f(X)=Bg+Byx+B,yx2 if 0<x=<x,, (A5)
algebraically and slowly aR, —; the (approximatg scal-

ing range found in experiments at a finite Reynolds number f(X)=Bo+Byx+Byx2+Byx® if 0=x=<x;. (A6)

is not the real Kolmogorov inertial range. In comparing ex-

periments with theories of inertial-range statistics, the finiteThree types of boundary conditions>at 0 are used, that is
Reynolds number effect should be considered. The absoluigamely Egs.(8a)—(8c). Different combinations of Egs.
or relative scaling exponeng, or g; found in experiments  (A1)—(A3), Egs.(A4)—(A6) and Egs.(8a)—(8c) yield many
at a finite Reynolds number are not the same as the redlifferent fitting forms. The coefficients; , B;, andgin Egs.
inertial-range scaling exponedf,. The anomalous scaling (A1)—(A3) and Eqgs.(A4)—(A6) are determined by Eq6),
(Sp<p/3 and{}; <p/3 while p>3) found in experiments ata proper continuity-smoothness conditionsxatand x,, and
finite Reynolds number is compatible with K41 normal scal-some boundary condition at=0. The coefficientA;, B;,
ing (£p=p/3). and B8 are expressed in terms & w, X;, andx,. For ex-

. . ample, the continuity-smoothness condition for E(&1)
This work was supported by the Natural Science Founda; . :
tion of China and the Research Program “Non-linear Sci- nd(Ad) is thatf(x) anddf(x)/dx are continuous at, and

a
ence.” X5, and the continuity-smoothness condition for EGs2)

and (A6) is thatf(x), df(x)/dx, andd?f(x)/dx? are con-
tinuous atx, andx,. The fitting form(7) corresponds to Egs.
(A2) and (A6) while using Eq.(8b) or Eqg. (8c), and corre-
sponds to Eq9(A2) and (A5) while using Eq.(8a). Accord-
ing to our calculationx, is between 2.3 and 2.5 and is
around 0.5 whiler is in the scaling range, hencesx<x,
andx;<X=<Xx, are quite narrow. Sincé(x) changes withx

APPENDIX: FITTING FORMS FOR P(x)

We describe the fitting forms d?(x) which have been
tested. Letf(x)=—In(P(x)), where f(x) changes withx
much slower thaiP(x). SinceP(x) should be in conformity
with the experimental fad2), we have Eq(7b), so we only 2
need to fitP(x) or f(x) over the interval Bx<x,. P(x)  Smoothly and slowly, it is reasonable to use a low-order

and the Gaussian PDF intersecka@ndx,, andx;<Xx,. In polynomial or power function to expres$$¢x) over the nar-

order to reduce the fitting error, we divide the interval 0 oW intervals G=x<x, andx,<x<=x,. This is confirmed by
<x<Xx, into two smaller subintervals, i.e.,<x<x, and  OUr numerical calculation. It should be emphasized that all

fitting forms of f(x) have to satisfy the experimental fact

X1SX$X2. .
The fitting forms over the intervak,;<x<x, we have (7b) for largex (x>x,), and they are different only for small
tested are X (X<x,). For the calculation of high-order structure func-

tions, the behavior oP(x) at largex is more important than

f(X)=Ag+Ax+AX2 if X;<X=<X,, (Al) its behavior at smalk.
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