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Normal and anomalous scaling of turbulence

J. Qian
Department of Physics, Graduate School of Academia Sinica, P.O. Box 3908, Beijing 100039, China

~Received 15 October 1997; revised manuscript received 3 June 1998!

A non-Gaussian model of the probability density function~PDF! of uDur u is proposed to study how the
scaling exponentsSp of the structure function̂uDur up& of finite Reynolds number turbulence depends upon the
Taylor-microscale Reynolds numberRl . HereDur is the longitudinal velocity difference across a distancer,
and^ & is the statistical average. The model not only predicts anomalous scaling (Sp,p/3 for p.3! observed
in experiments at a finite Reynolds number, but also predicts thatSp approaches normal scalingp/3 while Rl

is very high. Hence, in contrast to the prevailing multiscaling models, the non-Gaussian PDF model suggests
a completely different picture of scaling of isotropic turbulence: the anomalous scaling observed in experi-
ments is a finite Reynolds number effect, and the normal scaling is valid in the real Kolmogorov inertial range
corresponding to an infinite Reynolds number.
@S1063-651X~98!03312-1#

PACS number~s!: 47.27.Gs, 47.27.Jv
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The issue of normal and anomalous scaling of isotro
turbulence is a hot topic of statistical physics of turbulen
@1#. The structure function of orderp is defined aŝ uDur up&
or ^Dur

p&, where^ & is the statistical average andDur is the
longitudinal velocity difference across a distancer. In the
inertial range,^uDur up&;r zp or ^Dur

p&;r zp, and zp is the
scaling exponent of orderp. Strictly speaking,zp is defined
for the idealized model of inertial range corresponding to
asymptotic case of an infinite Reynolds number, and is ca
the real~or theoretical! inertial range scaling exponent in th
paper. According to Kolmogorov’s theory of 1941~K41! @2#,
zp5p/3 ~normal scaling!. However, the experimental value
of high-order scaling exponents are substantially lower t
the K41 prediction@3,4#. In order to explain this anomalou
scaling observed in experiments, various intermittency m
els have been developed@1#. We have shown@5# that the
scaling range found in experiments is not the same as the
Kolmogorov inertial range, and the finite Reynolds numb
effect should be considered in comparing experiments w
theories of inertial-range statistics. In fact, the structure fu
tions do not exactly follow power laws over the~approxi-
mate! scaling range found in experiments, which is co
monly called inertial range in the literature and actually
not the real Kolmogorov inertial range@5#. The quality of the
power-law behavior is modest even at a large Reynolds n
ber, and a curvature of the structure functions is gener
visible on a log-log plot@6#. Therefore, in order to solve th
issue of normal and anomalous scaling of isotropic tur
lence, it is indispensable to study whether and how the s
ing exponents obtained by experiments at a finite Reyno
number differ from the real inertial-range scaling expon
zp at an infinite Reynolds number. In this paper, a no
Gaussian model of probability density function~PDF! of
uDur u is proposed to study how the scaling exponentsSp of
^uDur up& of a finite Reynolds number turbulence depe
upon the Taylor-microscale Reynolds numberRl . The non-
Gaussian PDF model not only predicts anomalous sca
~Sp,p/3 for p.3! observed in experiments at a finite Re
nolds number, but also predicts thatSp approaches norma
scalingp/3 while Rl→`. Hence, in contrast to the prevai
PRE 581063-651X/98/58~6!/7325~5!/$15.00
c
e

e
d

n

-

al
r
h
-

-

-
ly

-
l-
s
t
-

g

ing multiscaling models, the non-Gaussian PDF model s
gests a completely different picture of scaling of isotrop
turbulence: the anomalous scaling observed in experimen
a finite Reynolds number effect, and the normal scaling
valid in the real Kolmogorov inertial range at an infini
Reynolds number. First we explain how this conclusion
obtained, and then discuss its implication and relevant iss

Let P(x) be the PDF ofx5uDur u/DLL(r )1/2, where
DLL(r )5^Dur

2& is the second-order structure function. W
have

^uDur up&5DLL~r !p/2^xp&, ^xp&5E
0

`

xpP~x!dx. ~1!

Although we are not able to drive the expression ofP(x)
from the Navier-Stokes equations, the experimental data
PDF ofDur can be used to derive the form ofP(x). Accord-
ing to the experimental data@7#, we have

P~x!5P0exp~2Bxm! while x.2 ~2!

and the parametersP0 , B, andm are functions ofr. Refer-
ence@7# discussed the question of over whatr range Eq.~2!
is valid. For the study of scaling exponentsSp , it is enough
to know that Eq.~2! is valid over the~approximate! scaling
range.

The PDF of the absolute value of a Gaussian rand
variable is

PG~x!5~2/p!1/2exp~2x2/2!, 0<x,`. ~3!

By the definition ofP(x) andPG(x), we have

E
0

`

P~x!dx5E
0

`

PG~x!dx51 ~4!

and

E
0

`

x2P~x!dx5E
0

`

x2PG~x!dx51. ~5!

Therefore,P(x) and PG(x) intersect at two pointsx1 and
x2 , i.e.,
7325 © 1998 The American Physical Society



7326 PRE 58J. QIAN
TABLE I. Dependence ofSp upon boundary condition~BC!, d, mm , K, andn for the case ofRl5800 and
CD50.75.K is the Kolmogorov constant.

BC d mm K n S2 S4 S6 S8 S10 S12

~8a! 2.6 1.0 1.2 2 0.694 1.28 1.78 2.21 2.57 2.89
~8b! 2.6 1.0 1.2 2 0.694 1.28 1.78 2.21 2.58 2.91
~8c! 2.6 1.0 1.2 2 0.694 1.28 1.78 2.21 2.58 2.90
~8a! 2.6 1.0 1.5 2 0.693 1.28 1.79 2.22 2.59 2.92
~8b! 2.6 1.0 1.5 2 0.693 1.28 1.79 2.22 2.60 2.94
~8c! 2.6 1.0 1.5 2 0.693 1.28 1.79 2.22 2.60 2.93
~8a! 2.556 1.0 1.2 2 0.694 1.28 1.79 2.24 2.63 2.98
~8a! 2.667 1.0 1.2 2 0.694 1.28 1.76 2.16 2.48 2.75
~8a! 2.6 0.8 1.2 2 0.694 1.28 1.78 2.21 2.59 2.93
~8a! 2.6 1.2 1.2 2 0.694 1.28 1.78 2.20 2.56 2.88
~8b! 2.6 0.8 1.2 2 0.694 1.28 1.78 2.22 2.61 2.95
~8b! 2.6 1.2 1.2 2 0.694 1.28 1.78 2.21 2.57 2.89
~8a! 2.6 1.0 1.2 1 0.697 1.28 1.75 2.15 2.48 2.76
~8a! 2.6 1.0 1.2 4 0.692 1.29 1.80 2.24 2.63 2.97
~8c! 2.6 1.0 1.2 1 0.697 1.28 1.75 2.15 2.49 2.77
~8c! 2.6 1.0 1.2 4 0.692 1.29 1.80 2.24 2.63 2.98
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P~x1!5PG~x1! and P~x2!5PG~x2!. ~6!

According to the experimental data of Tabelinget al. @7#, x1
is around 0.5 andx2 is around 2.4~this author thanks Pro
fessor Tabeling for providing enlarged Figures of their e
perimental data!. In the scaling range, a simple and reaso
able representation ofP(x) is

P~x!5exp@2 f ~x!#, ~7a!

f ~x!52 ln~P0!1Bxm if x>x2 , ~7b!

f ~x!5A01A1x1A2x21A3x3 if x1<x<x2 , ~7c!

f ~x!5B01B1x1B2x21B3x3 if 0<x<x1 . ~7d!

P(x) and f (x) are supposed to be continuous and smooth
x1 and x2 . Following the cubic spline method of applie
mathematics, the coefficientsAi andBi ( i 50,1,2,3) in Eqs.
~7c! and ~7d! are determined by Eq.~6! and some boundary
condition atx50. Various boundary conditions~BC’s! at x
50 have been used and compared. Table I shows the re
for the following three typical cases:

B350 and no BC atx50, ~8a!

d f~x!/dx50 at x50, ~8b!

f ~0! is given by some empirical formula. ~8c!

By using experimental data of Tabelinget al. @7#, it is easy to
determine howf (0) andm change withr, and the empirical
formula of Eq.~8c! can be obtained by a low-order polyno
mial fit. As shown in Table I, different boundary condition
at x50 generate nearly the same high-order scaling ex
nents, although they lead to different behavior ofP(x) at
small x. By Eqs.~3!, ~6!, ~7a!, and~7b!, we have

P05~2/p!1/2exp~Bx2
m2x2

2/2!. ~9!
-
-

at

lts

o-

Therefore, the PDF models~7! have four undetermined pa
rametersB, m, x1 , and x2 only; other parametersP0 , Ai ,
and Bi ( i 50,1,2,3) can be expressed in terms ofB, m, x1 ,
andx2 , so four independent conditions are needed to de
mine the PDF models~7! completely. We already have tw
conditions~4! and ~5!, and two other conditions are derive
in the next paragraph. The parameterx2 determined by the
four conditions is between 2.3 and 2.5, whiler is in the
~approximate! scaling range. Sincex2.2, Eq.~7b! is just the
experimental result~2!.

If there is a scaling range for the structure functio
^uDur up& of isotropic turbulence, then in the scaling range w
have

^x4&/^x3&d5const, ~10!

where ^x4& is the flatness,̂ x3& is the skewness, and th
experimental value of the exponentd is around 2.6. Different
intermittency models give different values ofd, for example
the log-normal model@8# gives d58/3, the multifractalp
model @9# givesd52.595, and the She-Leveque model@10#
leads tod52.556. In our numerical calculation, these diffe
ent values ofd are used and compared, and the result is giv
in Table I. Different values of the constant of Eq.~10!, which
are compatible with the experimental data of Tabelinget al.
@7#, are also used and compared; they lead to nearly the s
scaling exponents. In this paper, we deal with the struct
functions^uDur up& of the absolute value ofDur . According
to Kolmogorov’s similarity hypothesis, which underlies bo
K41 and K62 theory@2,8#, ^uDur up& and ^Dur

p& have the
same scaling exponents. Of course, it is a controversial is
whether it is valid for oddp. In the case ofp53, experi-
ments @11# show that^uDur u3& and DLLL(r )5^Dur

3& have
almost the same scaling exponent. Hence, in the sca
range, we have

^uDur u3&/DLLL~r !5const. ~11!

Equations~4!, ~5!, ~10!, and ~11! are the four independen
conditions to determine the four undetermined parameterB,
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m, x1 , and x2 of the PDF models~7!. The experimental
values of the constant of Eq.~11! is around25 to 24; its
different values are used in our numerical calculation a
give nearly the same scaling exponents.

Now we outline how to apply the above non-Gauss
PDF model to calculate the scaling exponentsSp of ^uDur up&
of finite Reynolds number turbulence. First of all, we have
determine ther dependence of the four undetermined para
etersB, m, x1 , andx2 of the PDF models~7!. In order to use
Eqs.~4!, ~5!, ~10!, and~11! to determine ther dependence o
the parametersB, m, x1 , andx2 , the second-order structur
function DLL(r ) and the third-order structure functio
DLLL(r ) are needed. For givenRl , by using the procedure
described in Ref.@5#, we calculate the third-order structur
functionDLLL(r ). The three-dimensional energy spectrum

E~k!5K«2/3k25/3F~k/kd!/@11~k0 /k!n15/3#, ~12!

and F(k/kd) is obtained by solving the spectral dynam
equation numerically@5#. Here K is the Kolmogorov con-
stant,« is energy dissipation rate,kd5(«/n3)1/4 is the Kol-
mogorov wave number,n is the kinematic viscosity, andk0
andn are large-scale parameters. Different values ofK andn
are used in our numerical calculation to see their effect
Sp , which is shown in Table I. By using Eq.~12! and

DLL~r !54E
0

`

E~k!@1/31cos~kr !/~kr !2

2sin~kr !/~kr !3#dk, ~13!

we obtain the second-order structure functionDLL(r ) ~Mo-
nin and Yaglom@1#!. The resultantDLLL(r ) andDLL(r ) are
checked: in the universal equilibrium rangeDLLL(r ) and
DLL(r ) should satisfy the Kolmogorov equation, which is
exact statistical result of the Navier-Stokes equation@1#, and
DLL(r ) should be compatible with Batchelor’s formul
which fits the experimental data ofDLL(r ) very well. After
DLL(r ) andDLLL(r ) are derived and checked, Eqs.~4!, ~5!,
~10!, and ~11! are used to determine how the four undet
mined parametersB, m, x1 , andx2 of the PDF models~7!
change withr in the ~approximate! scaling range for a given
Rl ; as mentioned above, other parametersP0 , Ai , andBi of
the models~7! are expressed in terms ofB, m, x1 , andx2 .
By using Eqs. ~1! and ~7!, we calculate how^uDur up&
changes withr in the scaling range for a givenRl . Finally,
within the scaling range, the log-log plot of^uDur up& against
r is fitted by a straight line using the least-squares meth
and its slope is the scaling exponentsSp . The result is given
in Fig. 1, and the meaning ofCD andmm is explained in the
next paragraph.

Before discussing our results, it is necessary to exp
how to determine the scaling ranger 1<r<r 2 of finite Rey-
nolds number turbulence. We useDLLL(r ) to determine the
scaling range. From the Navier-Stokes equations, we h
@1#

DLLL~r !52~ 4
5 !«r 1C1F, C56ndDLL~r !/dr,

~14!

whereF is a term representing the effect of large-scale m
tion. According to Kolmogorov@2,8#, the inertial range is the
d

n

-

n

-

d,

in

ve

-

small-scale range within which the termsC and F on the
right-hand side of Eq.~14! are negligible, so

DLLL~r !52~ 4
5 !«r or 2DLLL~r !/«r 50.8, ~15!

which is the celebrated Kolmogorov45 law. Since the terms
C and F of Eq. ~14! approach zero algebraically and ve
slowly, strictly speaking, the power law~15! is valid only for
the asymptotic case of an infinite Reynolds number.
shown in@5#, within the scaling range found in experimen
at a finite Reynolds number,2DLLL(r )/«r is substantially
lower than 0.8, and is not a constant independent ofr ~see
Fig. 1 of Ref.@5#!, so the scalingDLLL;r is not exact. The
scaling range is called ‘‘inertial range’’ in the literature, b
actually is not the real Kolmogorov inertial range@5#. Obvi-
ously the ~approximate! scaling range is around the max
mum point r m , where 2DLLL(r )/«r takes its maximum
value and changes withr slowly aroundr m . The scaling
exponentS3 of DLLL(r ) over r 1<r<r 2 is calculated by the
least-squares method mentioned above (S3 is a special case
of Sp for p53!, and its value changes as ther ranger 1<r
<r 2 changes. As a common practice, it is required that
scaling exponentS3 overr 1<r<r 2 is equal to 1. The scaling
exponentS3 over the ranger 1<r<r 2 is a function ofr 1 and
r 2 , denoted byS3(r 1 ,r 2). Generally speaking, there ar
many (r 1 ,r 2) satisfying S3(r 1 ,r 2)51 when the ranger 1
<r<r 2 is aroundr m . Hence there are manyr ranges around
r m over whichS351. In our calculation, the scaling rang
r 1<r<r 2 is defined as the widestr range satisfying the fol-
lowing conditions:

Scaling exponentS3 of DLLL~r ! over r 1<r<r 251,
~16a!

2DLLL~r !/«r>CD when r 1<r<r 2 , CD,0.8.
~16b!

According to @5#, if CD50.795, there is no scaling rang
while Rl,5000. If CD50.7, there is a scaling range o
nearly two decades forRl52000, and the quality of the
power-law behavior is modest over the scaling range;
larger CD is, the narrower the scaling ranger 1<r<r 2 be-
comes, and the better is the quality of the power-law beh
ior in the scaling range. AsCD approaches 0.8, the critica
Rl for the existence of the scaling ranger 1<r<r 2 becomes
higher and higher, and the scaling range approaches the
inertial range. Hence, we have

Sp→zp as CD→0.8 and Rl→`, ~17!

where zp is the real~or theoretical! inertial range scaling
exponents. The factormm in Table I and Figs. 1 and 2 is th
value ofm of Eq. ~7b! at r 5r m , and different values ofmm
correspond to different values of the constant of Eq.~11!.

Figure 1 shows how the scaling exponentsSp of finite
Reynolds number turbulence depend uponCD andRl . The
continuous line is for the case ofCD50.795, the small black
squares are forCD50.75, and the circles are forCD50.7. In
the case ofCD50.795, there is no scaling ranger 1<r<r 2
for Rl,5000. Over the scaling ranger 1<r<r 2 , the quality
of the power-law behavior̂uDur up&;r Sp is modest forCD
50.7 and is improved asCD increases. Table I shows how
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the boundary condition~BC! and the factorsd, mm , K, andn
influence Sp for the case ofRl5800 andCD50.75; the
higherRl is, the smaller the influence will be. TheSp shown
in Table I is in agreement with the famous experimental d
of Anselmetet al. @3#. For all thesed, mm , K, n, and the
boundary conditions listed in Table I, the scaling expone
Sp approachesp/3 while CD→0.8 andRl→`.

According to Ref.@6#, it is better to use the relative sca
ing exponentszp* of ^uDur up& against̂ uDur u3& over the range
20<r /h<300 to make a comparison with experiments
various flow configurations by the extended self-similar
method of Benziet al. @11#; hereh51/kd is the Kolmogorov
scale. In the framework of isotropic turbulence adopted
this paper, only two large-scale parametersk0 andn of Eq.
~12! are available to simulate the features of large-scale
tion, and differentk0 /kd corresponds to differentRl . Of
course, the effect of large-scale shear motion cannot be
sidered in the framework of isotropic turbulence. The no
Gaussian PDF models~7! are used to calculate the relativ
scaling exponentszp* of ^uDur up& against^uDur u3& over the
range 20<r /h<300 for p from 2 to 10, and the result is
shown in Fig. 2, which is in agreement with the experimen
data summarized in Fig. 3 of Ref.@6#. Therefore, Figs. 1 and

FIG. 1. The dependence of scaling exponentSp uponCD andRl

for p52, 4, 6, 8, and 10; , CD50.795; j j j, CD50.75; s

s s, CD50.7; K51.2, n52, d52.6, mm51, and the boundary
condition is~8a! or ~8b! or ~8c!.

FIG. 2. The relative scaling exponentszp* of ^uDur up& against
^uDur u3& for various values of large-scale parametersn and k0 (n
51, 2, and 4; the range ofk0 /kd corresponds to 800<Rl<104!.
K51.2, d52.6, mm51, and the boundary condition is~8a! or ~8b!
or ~8c!.
a

ts

n

o-

n-
-

l

2 clearly show that the non-Gaussian PDF model not o
predicts~absolute and relative! anomalous scaling observe
in experiments at a finite Reynolds number, but also pred
that Sp approaches normal scalingp/3 while Rl→`, so the
anomalous scaling observed in experiments is a finite R
nolds number effect. It should be mentioned that Grossm
et al. and Vainshtein and Sreenivasan@12# have studied the
issue of the finite Reynolds number effect on the scal
exponents from different viewpoints.

An important issue is whether the available data de
K41 normal scaling (zp5p/3). Kadanoff @13# pointed out
that, ‘‘Theory cannot for the moment distinguish the we
fluctuation of K41 and the intermittency of K62. To settle
question of this kind we should look to experiments. T
experimental evidence suggests the existence of inter
tency but is not yet conclusive.’’ In fact, the available e
perimental data do not deny asymptotic K41 scaling of i
tropic turbulence if the data are properly interpreted. T
~approximate! scaling range found in experiments at a fin
Reynolds number is not the real Kolmogorov inertial ran
of isotropic turbulence@5#. The experimental structure func
tions do not clearly exhibit power law even at a large Re
nolds number~on a log-log plot a curvature of the structu
function is visible in the scaling range! @6#. In some flow
configurations such as geophysical flows, due to the str
shearing effect, the~approximate! scaling range cannot b
described by an isotropic turbulence models. Kraichnan@14#
said, ‘‘relatively little attention has been devoted to the p
diction of turbulence statistics at finite Reynolds numb
. . . It is likely that the question of intermittency correction
to K41 can be resolved only when a detailed understand
of the dynamics at finite Reynolds numbers has be
achieved.’’ Moreover, in some cases, the so-called exp
mental evidence of K62 scaling actually favors K41 norm
scaling if the data are properly interpreted. For example,
using the Kolmogorov equation, we@15# have shown that the
experimental and numerical results of the second-order r
tive scaling exponent being 0.7~which was previously inter-
preted as a clear evidence of K62 scaling! actually favors
K41 scaling (z252/3) rather than K62 scaling (z250.7). In
this paper, we demonstrate that the anomalous scalingSp

,p/3 andzp* ,p/3 while p.3! found in experiments at a
finite Reynolds number is compatible with the K41 norm
scaling (zp5p/3), because both of them are logical cons
quences of the same non-Gaussian PDF model.

Finally we make a summary. The PDF models~7! with
the four conditions~4!, ~5!, ~10!, and ~11! are a simple and
reasonable expression of experimental facts, andm of Eq.
~7b! is much lower than 2 in the scaling range, so the mo
is highly non-Gaussian. The non-Gaussian model not o
predicts anomalous scaling observed in experiments at
nite Reynolds number, but also predicts that the real~or the-
oretical! inertial-range scaling exponentzp is p/3, which is
the limit value ofSp asCD→0.8 andRl→`. As shown in
Fig. 1, the higher the orderp is, the slower isSp approaching
zp5p/3; hence, in the experimental range ofRl , the higher
the orderp is, the larger will be the deviation ofSp from
zp5p/3. In contrast to the prevailing multiscaling mode
our results suggest a completely different picture of scal
of isotropic turbulence: the anomalous scaling observed
experiments is a finite Reynolds number effect, and the n
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mal scaling (zp5p/3) is valid in the real Kolmogorov iner
tial range corresponding to an infinite Reynolds number. O
issue is whether the asymptotic K41 behavior is just a c
sequence of the particular fitting form of Eqs.~7a!–~7d! for
P(x). Several different fitting forms forP(x) have been
tested~see the Appendix!, the asymptotic behavior remain
the same as long as the well-grounded conditions~2!, ~4!,
~5!, ~10!, and ~11! are satisfied, and the sameDLLL(r ) and
DLL(r ) are used. For understanding our results, it is esse
to realize that the finite Reynolds number effect decrea
algebraically and slowly asRl→`; the ~approximate! scal-
ing range found in experiments at a finite Reynolds num
is not the real Kolmogorov inertial range. In comparing e
periments with theories of inertial-range statistics, the fin
Reynolds number effect should be considered. The abso
or relative scaling exponentsSp or zp* found in experiments
at a finite Reynolds number are not the same as the
inertial-range scaling exponentzp . The anomalous scaling
~Sp,p/3 andzp* ,p/3 while p.3! found in experiments at a
finite Reynolds number is compatible with K41 normal sc
ing (zp5p/3).

This work was supported by the Natural Science Foun
tion of China and the Research Program ‘‘Non-linear S
ence.’’

APPENDIX: FITTING FORMS FOR P„x…

We describe the fitting forms ofP(x) which have been
tested. Letf (x)52 ln„P(x)…, where f (x) changes withx
much slower thanP(x). SinceP(x) should be in conformity
with the experimental fact~2!, we have Eq.~7b!, so we only
need to fitP(x) or f (x) over the interval 0<x<x2 . P(x)
and the Gaussian PDF intersect atx1 andx2 , andx1,x2 . In
order to reduce the fitting error, we divide the interval
<x<x2 into two smaller subintervals, i.e., 0<x<x1 and
x1<x<x2 .

The fitting forms over the intervalx1<x<x2 we have
tested are

f ~x!5A01A1x1A2x2 if x1<x<x2 , ~A1!
-

, J

h

e,
e
-

ial
es

r
-
e
te

al

-

-
-

f ~x!5A01A1x1A2x21A3x3 if x1<x<x2 , ~A2!

f ~x!5A01A1x1A2x21A3x31A4x4 if x1<x<x2 .
~A3!

The fitting forms over the interval 0<x<x1 we have
tested are

f ~x!5B01B1xb if 0<x<x1 , ~A4!

f ~x!5B01B1x1B2x2 if 0<x<x1 , ~A5!

f ~x!5B01B1x1B2x21B3x3 if 0<x<x1 . ~A6!

Three types of boundary conditions atx50 are used, that is
namely Eqs. ~8a!–~8c!. Different combinations of Eqs
~A1!–~A3!, Eqs.~A4!–~A6! and Eqs.~8a!–~8c! yield many
different fitting forms. The coefficientsAi , Bi , andb in Eqs.
~A1!–~A3! and Eqs.~A4!–~A6! are determined by Eq.~6!,
proper continuity-smoothness conditions atx1 and x2 , and
some boundary condition atx50. The coefficientsAi , Bi ,
and b are expressed in terms ofB, m, x1 , andx2 . For ex-
ample, the continuity-smoothness condition for Eqs.~A1!
and~A4! is that f (x) andd f(x)/dx are continuous atx1 and
x2 , and the continuity-smoothness condition for Eqs.~A2!
and ~A6! is that f (x), d f(x)/dx, and d2f (x)/dx2 are con-
tinuous atx1 andx2 . The fitting form~7! corresponds to Eqs
~A2! and ~A6! while using Eq.~8b! or Eq. ~8c!, and corre-
sponds to Eqs.~A2! and~A5! while using Eq.~8a!. Accord-
ing to our calculation,x2 is between 2.3 and 2.5 andx1 is
around 0.5 whiler is in the scaling range, hence 0<x<x1
andx1<x<x2 are quite narrow. Sincef (x) changes withx
smoothly and slowly, it is reasonable to use a low-ord
polynomial or power function to expressf (x) over the nar-
row intervals 0<x<x1 andx1<x<x2 . This is confirmed by
our numerical calculation. It should be emphasized that
fitting forms of f (x) have to satisfy the experimental fa
~7b! for largex (x.x2), and they are different only for sma
x (x,x2). For the calculation of high-order structure fun
tions, the behavior ofP(x) at largex is more important than
its behavior at smallx.
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